IDEA2023.1.3破解,IDEA破解,IDEA 2023.1破解,最新IDEA激活码

漫画:什么是HTTPS

IDEA2023.1.3破解,IDEA破解,IDEA 2023.1破解,最新IDEA激活码

73_1.png

73_2.png

73_3.png

73_4.png

73_5.png

73_6.png

73_7.png

73_8.png

73_9.png

什么是HTTP协议?

HTTP协议全称Hyper Text Transfer Protocol,翻译过来就是超文本传输协议,位于TCP/IP四层模型当中的应用层。

73_10.png

HTTP协议通过请求/响应的方式,在客户端和服务端之间进行通信。

73_11.png

这一切看起来很美好,但是HTTP协议有一个致命的缺点:不够安全

HTTP协议的信息传输完全以明文方式,不做任何加密,相当于是在网络上“裸奔”。这样会导致什么问题呢?让我们打一个比方:

小灰是客户端,小灰的同事小红是服务端,有一天小灰试图给小红发送请求。

73_12.png

但是,由于传输信息是明文,这个信息有可能被某个中间人恶意截获甚至篡改。这种行为叫做中间人攻击

73_13.png

73_14.png

73_15.png

如何进行加密呢?

小灰和小红可以事先约定一种对称加密方式,并且约定一个随机生成的密钥。后续的通信中,信息发送方都使用密钥对信息加密,而信息接收方通过同样的密钥对信息解密。

73_16.png

73_17.png

这样做是不是就绝对安全了呢?并不是。

虽然我们在后续的通信中对明文进行了加密,但是第一次约定加密方式和密钥的通信仍然是明文,如果第一次通信就已经被拦截了,那么密钥就会泄露给中间人,中间人仍然可以解密后续所有的通信内容。

73_18.png

这可怎么办呢?别担心,我们可以使用非对称加密,为密钥的传输做一层额外的保护。

非对称加密的一组秘钥对中,包含一个公钥和一个私钥。明文既可以用公钥加密,用私钥解密;也可以用私钥加密,用公钥解密。

在小灰和小红建立通信的时候,小红首先把自己的公钥Key1发给小灰:

73_19.png

收到小红的公钥以后,小灰自己生成一个用于对称加密的密钥Key2,并且用刚才接收的公钥Key1对Key2进行加密(这里有点绕),发送给小红:

73_20.png

小红利用自己非对称加密的私钥,解开了公钥Key1的加密,获得了Key2的内容。从此以后,两人就可以利用Key2进行对称加密的通信了。

73_21.png

在通信过程中,即使中间人在一开始就截获了公钥Key1,由于不知道私钥是什么,也无从解密。

73_22.png

73_23.png

是什么坏主意呢?中间人虽然不知道小红的私钥是什么,但是在截获了小红的公钥Key1之后,却可以偷天换日,自己另外生成一对公钥私钥,把自己的公钥Key3发送给小灰。

73_24.png

小灰不知道公钥被偷偷换过,以为Key3就是小红的公钥。于是按照先前的流程,用Key3加密了自己生成的对称加密密钥Key2,发送给小红。

这一次通信再次被中间人截获,中间人先用自己的私钥解开了Key3的加密,获得Key2,然后再用当初小红发来的Key1重新加密,再发给小红。

73_25.png

这样一来,两个人后续的通信尽管用Key2做了对称加密,但是中间人已经掌握了Key2,所以可以轻松进行解密。

73_26.png

73_27.png

是什么解决方案呢?难道再把公钥进行一次加密吗?这样只会陷入鸡生蛋蛋生鸡,永无止境的困局。

这时候,我们有必要引入第三方,一个权威的证书颁发机构(CA)来解决。

到底什么是证书呢?证书包含如下信息:

73_28.png

为了便于说明,我们这里做了简化,只列出了一些关键信息。至于这些证书信息的用处,我们看看具体的通信流程就能够弄明白了。

流程如下:

1、作为服务端的小红,首先把自己的公钥发给证书颁发机构,向证书颁发机构申请证书。

73_29.png

2、证书颁发机构自己也有一对公钥私钥。机构利用自己的私钥来加密Key1,并且通过服务端网址等信息生成一个证书签名,证书签名同样经过机构的私钥加密。证书制作完成后,机构把证书发送给了服务端小红。

73_30.png

3、当小灰向小红请求通信的时候,小红不再直接返回自己的公钥,而是把自己申请的证书返回给小灰。

73_31.png

4、小灰收到证书以后,要做的第一件事情是验证证书的真伪。需要说明的是,各大浏览器和操作系统已经维护了所有权威证书机构的名称和公钥。所以小灰只需要知道是哪个机构颁布的证书,就可以从本地找到对应的机构公钥,解密出证书签名。

接下来,小灰按照同样的签名规则,自己也生成一个证书签名,如果两个签名一致,说明证书是有效的。

验证成功后,小灰就可以放心地再次利用机构公钥,解密出服务端小红的公钥Key1。

73_32.png

5、像之前一样,小灰生成自己的对称加密密钥Key2,并且用服务端公钥Key1加密Key2,发送给小红。

73_33.png

6、最后,小红用自己的私钥解开加密,得到对称加密密钥Key2。于是两人开始用Key2进行对称加密的通信。

73_34.png

在这样的流程下,我们不妨想一想,中间人是否还具有使坏的空间呢?

73_35.png

73_36.png

73_37.png

73_38.png

73_39.png

73_40.png

73_41.png

注:最新推出的TLS协议,是SSL 3.0协议的升级版,和SSL协议的大体原理是相同的。

73_42.png

转载:

漫画:什么是HTTPS?

文章永久链接:https://tech.souyunku.com/?p=34242


Warning: A non-numeric value encountered in /data/wangzhan/tech.souyunku.com.wp/wp-content/themes/dux/functions-theme.php on line 1154
赞(93) 打赏



未经允许不得转载:搜云库技术团队 » 漫画:什么是HTTPS

IDEA2023.1.3破解,IDEA破解,IDEA 2023.1破解,最新IDEA激活码
IDEA2023.1.3破解,IDEA破解,IDEA 2023.1破解,最新IDEA激活码

评论 抢沙发

大前端WP主题 更专业 更方便

联系我们联系我们

觉得文章有用就打赏一下文章作者

微信扫一扫打赏

微信扫一扫打赏


Fatal error: Uncaught Exception: Cache directory not writable. Comet Cache needs this directory please: `/data/wangzhan/tech.souyunku.com.wp/wp-content/cache/comet-cache/cache/https/tech-souyunku-com/index.q`. Set permissions to `755` or higher; `777` might be needed in some cases. in /data/wangzhan/tech.souyunku.com.wp/wp-content/plugins/comet-cache/src/includes/traits/Ac/ObUtils.php:367 Stack trace: #0 [internal function]: WebSharks\CometCache\Classes\AdvancedCache->outputBufferCallbackHandler() #1 /data/wangzhan/tech.souyunku.com.wp/wp-includes/functions.php(5109): ob_end_flush() #2 /data/wangzhan/tech.souyunku.com.wp/wp-includes/class-wp-hook.php(303): wp_ob_end_flush_all() #3 /data/wangzhan/tech.souyunku.com.wp/wp-includes/class-wp-hook.php(327): WP_Hook->apply_filters() #4 /data/wangzhan/tech.souyunku.com.wp/wp-includes/plugin.php(470): WP_Hook->do_action() #5 /data/wangzhan/tech.souyunku.com.wp/wp-includes/load.php(1097): do_action() #6 [internal function]: shutdown_action_hook() #7 {main} thrown in /data/wangzhan/tech.souyunku.com.wp/wp-content/plugins/comet-cache/src/includes/traits/Ac/ObUtils.php on line 367