专注于 JetBrains IDEA 全家桶,永久激活,教程
提供 JetBrains 全家桶激活码、注册码、破解补丁下载及详细激活教程,等工具的永久激活

如何合理地估算线程池大小?(转载)

如何合理地估算线程池大小?

这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:如何设计线程池大小,使得可以在1s内处理完20个Transaction?

计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。

很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。

再来第二种简单的但不知是否可行的方法(N为CPU总核数):

1、 如果是CPU密集型应用,则线程池大小设置为N+1
2、 如果是IO密集型应用,则线程池大小设置为2N+1

如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。

接下来在这个文档:服务器性能IO优化 中发现一个估算公式:

最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

可以得出一个结论:线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

上一种估算方法也和这个结论相合。

一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:

  • 尽量提高短板操作的并行化比率,比如多线程下载技术
  • 增强短板能力,比如用NIO替代IO

第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:

加速比=优化前系统耗时 / 优化后系统耗时

加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:

Speedup <= 1 / (F + (1-F)/N)

当N足够大时,串行化比率F越小,加速比Speedup越大。

写到这里,我突然冒出一个问题。

是否使用线程池就一定比使用单线程高效呢?

答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:

  • 多线程带来线程上下文切换开销,单线程就没有这种开销

当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。

所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。

最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:

 package threadpool;

 import java.math.BigDecimal;
 import java.math.RoundingMode;
 import java.util.Timer;
 import java.util.TimerTask;
 import java.util.concurrent.BlockingQueue;

 /**
  * A class that calculates the optimal thread pool boundaries. It takes the
  * desired target utilization and the desired work queue memory consumption as
  * input and retuns thread count and work queue capacity.
  *
  * @author Niklas Schlimm
  */
 public abstract class PoolSizeCalculator {

     /**
      * The sample queue size to calculate the size of a single {@link Runnable}
      * element.
      */
     private final int SAMPLE_QUEUE_SIZE = 1000;

     /**
      * Accuracy of test run. It must finish within 20ms of the testTime
      * otherwise we retry the test. This could be configurable.
      */
     private final int EPSYLON = 20;

     /**
      * Control variable for the CPU time investigation.
      */
     private volatile boolean expired;

     /**
      * Time (millis) of the test run in the CPU time calculation.
      */
     private final long testtime = 3000;

     /**
      * Calculates the boundaries of a thread pool for a given {@link Runnable}.
      *
      * @param targetUtilization the desired utilization of the CPUs (0 <= targetUtilization <=      *            1)      * @param targetQueueSizeBytes      *            the desired maximum work queue size of the thread pool (bytes)
      */
     protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) {
         calculateOptimalCapacity(targetQueueSizeBytes);
         Runnable task = creatTask();
         start(task);
         start(task); // warm up phase
         long cputime = getCurrentThreadCPUTime();
         start(task); // test intervall
         cputime = getCurrentThreadCPUTime() - cputime;
         long waittime = (testtime * 1000000) - cputime;
         calculateOptimalThreadCount(cputime, waittime, targetUtilization);
     }

     private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {
         long mem = calculateMemoryUsage();
         BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem),
                 RoundingMode.HALF_UP);
         System.out.println("Target queue memory usage (bytes): "
                 + targetQueueSizeBytes);
         System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue");
         System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);
         System.out.println("* Recommended queue capacity (bytes): " + queueCapacity);
     }

     /**
      * Brian Goetz' optimal thread count formula, see 'Java Concurrency in
      * * Practice' (chapter 8.2)      *
      * * @param cpu
      * *            cpu time consumed by considered task
      * * @param wait
      * *            wait time of considered task
      * * @param targetUtilization
      * *            target utilization of the system
      */
     private void calculateOptimalThreadCount(long cpu, long wait,
                                              BigDecimal targetUtilization) {
         BigDecimal waitTime = new BigDecimal(wait);
         BigDecimal computeTime = new BigDecimal(cpu);
         BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()
                 .availableProcessors());
         BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)
                 .multiply(new BigDecimal(1).add(waitTime.divide(computeTime,
                         RoundingMode.HALF_UP)));
         System.out.println("Number of CPU: " + numberOfCPU);
         System.out.println("Target utilization: " + targetUtilization);
         System.out.println("Elapsed time (nanos): " + (testtime * 1000000));
         System.out.println("Compute time (nanos): " + cpu);
         System.out.println("Wait time (nanos): " + wait);
         System.out.println("Formula: " + numberOfCPU + " * "
                 + targetUtilization + " * (1 + " + waitTime + " / "
                 + computeTime + ")");
         System.out.println("* Optimal thread count: " + optimalthreadcount);
     }

     /**
      * * Runs the {@link Runnable} over a period defined in {@link #testtime}.
      * * Based on Heinz Kabbutz' ideas
      * * (http://www.javaspecialists.eu/archive/Issue124.html).
      * *
      * * @param task
      * *            the runnable under investigation
      */
     public void start(Runnable task) {
         long start = 0;
         int runs = 0;
         do {
             if (++runs > 5) {
                 throw new IllegalStateException("Test not accurate");
             }
             expired = false;
             start = System.currentTimeMillis();
             Timer timer = new Timer();
             timer.schedule(new TimerTask() {
                 public void run() {
                     expired = true;
                 }
             }, testtime);
             while (!expired) {
                 task.run();
             }
             start = System.currentTimeMillis() - start;
             timer.cancel();
         } while (Math.abs(start - testtime) > EPSYLON);
         collectGarbage(3);
     }

     private void collectGarbage(int times) {
         for (int i = 0; i < times; i++) {
             System.gc();
             try {
                 Thread.sleep(10);
             } catch (InterruptedException e) {
                 Thread.currentThread().interrupt();
                 break;
             }
         }
     }

     /**
      * Calculates the memory usage of a single element in a work queue. Based on
      * Heinz Kabbutz' ideas
      * (http://www.javaspecialists.eu/archive/Issue029.html).
      *
      * @return memory usage of a single {@link Runnable} element in the thread
      * pools work queue
      */
     public long calculateMemoryUsage() {
         BlockingQueue queue = createWorkQueue();
         for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
             queue.add(creatTask());
         }

         long mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
         long mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();

         queue = null;

         collectGarbage(15);

         mem0 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();
         queue = createWorkQueue();

         for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
             queue.add(creatTask());
         }

         collectGarbage(15);

         mem1 = Runtime.getRuntime().totalMemory() - Runtime.getRuntime().freeMemory();

         return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
     }

     /**
      * Create your runnable task here.
      *
      * @return an instance of your runnable task under investigation
      */
     protected abstract Runnable creatTask();

     /**
      * Return an instance of the queue used in the thread pool.
      *
      * @return queue instance
      */
     protected abstract BlockingQueue createWorkQueue();

     /**
      * Calculate current cpu time. Various frameworks may be used here,
      * depending on the operating system in use. (e.g.
      * http://www.hyperic.com/products/sigar). The more accurate the CPU time
      * measurement, the more accurate the results for thread count boundaries.
      *
      * @return current cpu time of current thread
      */
     protected abstract long getCurrentThreadCPUTime();

 }

然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:

 package threadpool;

 import java.io.BufferedReader;
 import java.io.IOException;
 import java.io.InputStreamReader;
 import java.lang.management.ManagementFactory;
 import java.math.BigDecimal;
 import java.net.HttpURLConnection;
 import java.net.URL;
 import java.util.concurrent.BlockingQueue;
 import java.util.concurrent.LinkedBlockingQueue;

 public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {

     @Override
     protected Runnable creatTask() {
         return new AsyncIOTask();
     }

     @Override
     protected BlockingQueue createWorkQueue() {
         return new LinkedBlockingQueue(1000);
     }

     @Override
     protected long getCurrentThreadCPUTime() {
         return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
     }

     public static void main(String[] args) {
         PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();
         poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
     }

 }

 /**
  * 自定义的异步IO任务
  * @author Will
  *
  */
 class AsyncIOTask implements Runnable {

     public void run() {
         HttpURLConnection connection = null;
         BufferedReader reader = null;
         try {
             String getURL = "http://baidu.com";
             URL getUrl = new URL(getURL);

             connection = (HttpURLConnection) getUrl.openConnection();
             connection.connect();
             reader = new BufferedReader(new InputStreamReader(
                     connection.getInputStream()));

             String line;
             while ((line = reader.readLine()) != null) {
                 // empty loop
             }
         }

         catch (IOException e) {

         } finally {
             if(reader != null) {
                 try {
                     reader.close();
                 }
                 catch(Exception e) {

                 }
             }
             connection.disconnect();
         }

     }

 }

得到如下输出:

Target queue memory usage (bytes): 100000
createTask() produced threadpool.AsyncIOTask which took 40 bytes in a queue
Formula: 100000 / 40
* Recommended queue capacity (bytes): 2500
Number of CPU: 8
Target utilization: 1
Elapsed time (nanos): 3000000000
Compute time (nanos): 280801800
Wait time (nanos): 2719198200
Formula: 8 * 1 * (1 + 2719198200 / 280801800)
* Optimal thread count: 88

推荐的任务队列大小为2500,线程数为88。依次为依据,我们就可以构造这样一个线程池:

ThreadPoolExecutor pool = new ThreadPoolExecutor(88, 88, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(2500));

可以将这个文件打包成可执行的jar文件,这样就可以拷贝到测试/正式环境上执行。

 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
     <modelVersion>4.0.0</modelVersion>

     <groupId>threadpool</groupId>
     <artifactId>dark-magic</artifactId>
     <version>1.0-SNAPSHOT</version>
     <packaging>jar</packaging>

     <name>dark_magic</name>
     <url>http://maven.apache.org</url>

     <properties>
         <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
     </properties>

     <dependencies>

     </dependencies>

     <build>
         <finalName>dark-magic</finalName>

         <plugins>
             <plugin>
                 <artifactId>maven-assembly-plugin</artifactId>
                 <configuration>
                     <appendAssemblyId>false</appendAssemblyId>
                     <descriptorRefs>
                         <descriptorRef>jar-with-dependencies</descriptorRef>
                     </descriptorRefs>
                     <archive>
                         <manifest>
                             <!-- 此处指定main方法入口的class -->
                             <mainClass>threadpool.SimplePoolSizeCaculatorImpl</mainClass>
                         </manifest>
                     </archive>
                 </configuration>
                 <executions>
                     <execution>
                         <id>make-assembly</id>
                         <phase>package</phase>
                         <goals>
                             <goal>assembly</goal>
                         </goals>
                     </execution>
                 </executions>
             </plugin>
         </plugins>
     </build>
 </project>

83_1.png

转载:

如何合理地估算线程池大小?

http://www.importnew.com/17384.html

https://tech.souyunku.com/cherish010/p/8334952.html

文章永久链接:https://tech.souyunku.com/21132

未经允许不得转载:搜云库技术团队 » 如何合理地估算线程池大小?(转载)

JetBrains 全家桶,激活、破解、教程

提供 JetBrains 全家桶激活码、注册码、破解补丁下载及详细激活教程,支持 IntelliJ IDEA、PyCharm、WebStorm 等工具的永久激活。无论是破解教程,还是最新激活码,均可免费获得,帮助开发者解决常见激活问题,确保轻松破解并快速使用 JetBrains 软件。获取免费的破解补丁和激活码,快速解决激活难题,全面覆盖 2024/2025 版本!

联系我们联系我们