Integer和Long的java中使用特别广泛,本人主要一下Integer.toString(int i)和Long.toString(long i)方法,其他方法都比较容易理解。
Integer.toString(int i)和Long.toString(long i),以Integer.toString(int i)为例,先看源码:
/**
* Returns a {@code String} object representing the
* specified integer. The argument is converted to signed decimal
* representation and returned as a string, exactly as if the
* argument and radix 10 were given as arguments to the {@link
* #toString(int, int)} method.
*
* @param i an integer to be converted.
* @return a string representation of the argument in base 10.
*/
public static String toString(int i) {
if (i == Integer.MIN_VALUE)
return "-2147483648";
int size = (i < 0) ? stringSize(-i) + 1 : stringSize(i);
char[] buf = new char[size];
getChars(i, size, buf);
return new String(buf, true);
}
通过调用stringSize来计算i的长度,也就是位数,用来分配合适大小的字符数组buf,然后调用getChars来设置buf的值。
stringSize的Integer和Long中的实现有所不同,先看看源码
Integer.stringSize(int x)源码:
final static int [] sizeTable = { 9, 99, 999, 9999, 99999, 999999, 9999999,
99999999, 999999999, Integer.MAX_VALUE };
// Requires positive x
static int stringSize(int x) {
for (int i=0; ; i++)
if (x <= sizeTable[i])
return i+1;
}
将数据存放在数组中,数组中的下标+1就是i的长度,当x小于sizeTable中的某个值时,这样设计只需要循环就可以得出长度,效率高。
Long.stringSize(long x)源码:
// Requires positive x
static int stringSize(long x) {
long p = 10;
for (int i=1; i<19; i++) {
if (x < p)
return i;
p = 10*p;
}
return 19;
}
因为Long的十进制最大长度是19,在计算长度时通过反复乘以10的方式求出来的,可能会问为什么不用Integer.stringSize(int x)的方法,我也没有找到合适的解释。
传统的方案可能是通过反复除以10的方法求出来的,但是这样的效率低,因为计算机在处理乘法时要比除法快。
getChars(int i, int index, char[] buf)源码:
/**
* Places characters representing the integer i into the
* character array buf. The characters are placed into
* the buffer backwards starting with the least significant
* digit at the specified index (exclusive), and working
* backwards from there.
*
* Will fail if i == Integer.MIN_VALUE
*/
static void getChars(int i, int index, char[] buf) {
int q, r;
int charPos = index;
char sign = 0;
if (i < 0) {
sign = '-';
i = -i;
}
// Generate two digits per iteration
while (i >= 65536) {
q = i / 100;
// really: r = i - (q * 100);
r = i - ((q << 6) + (q << 5) + (q << 2));
i = q;
buf [--charPos] = DigitOnes[r];
buf [--charPos] = DigitTens[r];
}
// Fall thru to fast mode for smaller numbers
// assert(i <= 65536, i);
for (;;) {
q = (i * 52429) >>> (16+3);
r = i - ((q << 3) + (q << 1)); // r = i-(q*10) ...
buf [--charPos] = digits [r];
i = q;
if (i == 0) break;
}
if (sign != 0) {
buf [--charPos] = sign;
}
}
这是整个转换过程的核心代码,首先确定符号,其次当i>=65536时将i除以100,并且通过DigitOnes[r]和DigitTens[r]来获取十位和个位上的值,因为除法慢,所以一次性除以100提高效率,DigitOnes和DigitTens如下:
final static char [] DigitTens = {
'0', '0', '0', '0', '0', '0', '0', '0', '0', '0',
'1', '1', '1', '1', '1', '1', '1', '1', '1', '1',
'2', '2', '2', '2', '2', '2', '2', '2', '2', '2',
'3', '3', '3', '3', '3', '3', '3', '3', '3', '3',
'4', '4', '4', '4', '4', '4', '4', '4', '4', '4',
'5', '5', '5', '5', '5', '5', '5', '5', '5', '5',
'6', '6', '6', '6', '6', '6', '6', '6', '6', '6',
'7', '7', '7', '7', '7', '7', '7', '7', '7', '7',
'8', '8', '8', '8', '8', '8', '8', '8', '8', '8',
'9', '9', '9', '9', '9', '9', '9', '9', '9', '9',
} ;
final static char [] DigitOnes = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
} ;
假设r=34,通过查表可以得出DigitOnes[r]=4,DigitTens[r]=3。
1 q = (i * 52429) >>> (16+3); 的本质是将i/10,并去掉小数部分,219=524288,52429/524288=0.10000038146972656,为什么会选择52429/524288呢,看了下面就知道了:
2^10=1024, 103/1024=0.1005859375
2^11=2048, 205/2048=0.10009765625
2^12=4096, 410/4096=0.10009765625
2^13=8192, 820/8192=0.10009765625
2^14=16384, 1639/16384=0.10003662109375
2^15=32768, 3277/32768=0.100006103515625
2^16=65536, 6554/65536=0.100006103515625
2^17=131072, 13108/131072=0.100006103515625
2^18=262144, 26215/262144=0.10000228881835938
2^19=524288, 52429/524288=0.10000038146972656
可以看出52429/524288的精度最高,并且在Integer的取值范围内。
1 r = i – ((q << 3) + (q << 1)); // r = i-(q*10) … 用位运算而不用乘法也是为了提高效率。
注:以上分析内容仅个人观点(部分参考网上),如有不正确的地方希望可以相互交流。