专注于 JetBrains IDEA 全家桶,永久激活,教程
持续更新 PyCharm,IDEA,WebStorm,PhpStorm,DataGrip,RubyMine,CLion,AppCode 永久激活教程

MySQL至TiDB复制延迟监控

因生产环境mysql中有较多复杂sql且运行效率低,因此采用tidb作为生产环境的从库进行部分慢sql及报表的读写分离。其中MySQL至TIDB采用Syncer工具同步。
关于TIDB的安装及Syncer可参照官网指引进行,搭建的主从复制架构如下:

90_1.png

因该方式中TiDB的数据是通过Syncer同步的,且TIDB无show slave status命令查看复制情况,故自己开发脚本对MySQL至TIDB的复制延迟进行监控,并且将结果进行图形化展示以便于直观分析,而且此方法也可以监控MySQL主从延迟,类似于percona toolkit的pt-heartbeat 。

一、 准备工作
1、 监控所需工具
监控:Python 2.7及以上,安装pymysql(或MySQLdb),其中linux升级python及pip安装可参考之前的博文

Python升级:https://tech.souyunku.com/gjc592/p/9223005.html

pip安装: https://tech.souyunku.com/gjc592/p/9272209.html

图形化展示:Python plotly、matplotlib或pandas包

2、 监控延迟思路
1)创建监控数据库(monitor)及相关表(monitor_time,monitor_result)
2)每隔固定时间(看监控精确度,如0.5s)将当期时间或时间戳的结果更新到mysql的监控表中
3)对比mysql与tidb对应的监控库(monitor库)中的monitor_time表的时间差,并将结果记录在monitor_result里

3、 可视化展示结果
用Python 的plotly、matplotlib或pandas等展示监控结果

二、延时监控实施步骤

1、 创建数据库及相关表,并将其加入Syncer同步中


CREATE DATABASE `monitor`; USE `monitor`; CREATE TABLE `monitor_time` ( `t` bigint(20) DEFAULT NULL ) ENGINE=InnoDB DEFAULT CHARSET=utf8; insert into monitor_time select 1; CREATE TABLE `monitor_result` ( `id` bigint(20) NOT NULL AUTO_INCREMENT, `t` int(11) DEFAULT NULL COMMENT '延迟时间', `add_time` timestamp NULL DEFAULT CURRENT_TIMESTAMP COMMENT '监控记录生成时间', `t_mysql` int(11) DEFAULT NULL COMMENT 'mysql主从延迟时长', PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8;

2、 创建监控账号并授权
单独创建一个用于监控该延迟的账号,并添加相应的权限。

CREATE USER monitor@'192.168.3.42' IDENTIFIED BY 'monitor';
GRANT  SELECT ,INSERT ,UPDATE ON monitor.* TO monitor@'192.168.3.42';

3、 监控脚本

每隔0、5s更新一次monitor_time 表,自定义时间(如例子中10s)获取一次监控结果,并将记录写入数据库中

import os,time
import pymysql

while True:
        t = time.time()
        t1= int(round(t * 1000))
        conn = pymysql.connect(host='*.*.*.*',port=3306,user='monitor',passwd='monitor')
        cur = conn.cursor()
        sql_update = "update monitor.monitor_time set t="+str(t1)
        cur.execute(sql_update)
        conn.commit()
        conn.close()
        time.sleep(0.5)
import os,time
import pymysql

while True:
        conn_sor = pymysql.connect(host='*.*.*.*',port=3306,user='monitor',passwd='monitor')
        cur_sor = conn_sor.cursor()
        conn_138 = pymysql.connect(host='*.*.*.*',port=3306,user='monitor',passwd='monitor')
        cur_138 = conn_138.cursor()
        conn_des = pymysql.connect(host='*.*.*.*',port=4000,user='monitor',passwd='monitor')
        cur_des = conn_des.cursor()
        sql_get_time = "select t from  monitor.monitor_time "

        cur_sor.execute(sql_get_time)
        v_src_tuple=cur_sor.fetchone()
        t_sor=v_src_tuple[0]

        cur_des.execute(sql_get_time)
        v_des_tuple=cur_des.fetchone()
        t_des=v_des_tuple[0]

        cur_138.execute(sql_get_time)
        v_138_tuple=cur_138.fetchone()
        t_138=v_138_tuple[0]

        t1 = t_sor/1000 - t_des/1000
        t2 = t_sor/1000 - t_138/1000
        sql_insert = "insert into  monitor.monitor_result(t,t_mysql) select "+str(t1)+","+str(t2)
        cur_sor.execute(sql_insert)
        conn_sor.commit()

        conn_sor.close()
        conn_des.close()
        time.sleep(10)

将2个脚本放在监控服务器上运行

python monitor_tidb.py  &
python get_tidb_delay.py  &

三 可视化展示

以下是其中一种实现方式,其他如折线图方式可执行修改

# __author__ : 'GJC'
# __created__ : '2018/9/17'
# coding=utf-8

import pymysql
import plotly.plotly
from plotly.graph_objs import *
import plotly.graph_objs as abc
import matplotlib.pyplot as plt

host = "*.*.*.*"
user = "monitor"
passwd = "monitor"
db = "monitor"
port = 3306
charset = "utf8"

conn = pymysql.connect(
    host=host,
    port=port,
    user=user,
    passwd=passwd,
    db=db,
    charset=charset,
)

cur = conn.cursor()

re = cur.execute("SELECT  add_time,t,t_mysql FROM  monitor.monitor_result_t ")

dfs = cur.fetchall()
listx = []
listy = []
listy2 = []
for row in dfs:
    listx.append(row[0])
    listy.append(row[1])
    listy2.append(row[2])

cur.close()
conn.commit()
conn.close()

length = listy.__len__()

data_1 = abc.Scatter(
    x=listx,
    y=listy,
    name='syncer_delay_time_tidb',
    mode='markers',
    marker=dict(
        size=10,
        color="rgba(255,47,167,.9)",
        line=dict(
            width=2,
            color='rgb(2,2,2)'
        )
    )
)

data_2 = abc.Scatter(
    x=listx,
    y=listy2,
    name='syncer_delay_time_mysql',
    mode='markers',
    marker=dict(
        size=10,
        color="rgba(255,47,167,.9)",
        line=dict(
            width=2,
            color='rgb(3,3,3)'
        )
    )
)
data1 = Data([data_1])
plotly.offline.plot(data1)

data2 = Data([data_2])
plotly.offline.plot(data2)

部分时间段效果如下:

90_2.png

耿小厨已开通个人微信公众号,想进一步沟通或想了解其他文章的同学可以关注我

90_3.png

文章永久链接:https://tech.souyunku.com/37765

未经允许不得转载:搜云库技术团队 » MySQL至TiDB复制延迟监控

JetBrains 全家桶,激活、破解、教程

提供 JetBrains 全家桶激活码、注册码、破解补丁下载及详细激活教程,支持 IntelliJ IDEA、PyCharm、WebStorm 等工具的永久激活。无论是破解教程,还是最新激活码,均可免费获得,帮助开发者解决常见激活问题,确保轻松破解并快速使用 JetBrains 软件。获取免费的破解补丁和激活码,快速解决激活难题,全面覆盖 2024/2025 版本!

联系我们联系我们