专注于 JetBrains IDEA 全家桶,永久激活,教程
持续更新 PyCharm,IDEA,WebStorm,PhpStorm,DataGrip,RubyMine,CLion,AppCode 永久激活教程

golang核心原理-协程栈

什么是协程栈

每个协程都需要有自己的栈空间,来存放变量,函数,寄存器等信息。所以系统需要给协程分配足够的栈空间。

栈分配方式

固定大小的栈

每个协程都有相同的,固定大小的栈。

优点:实现简单;

缺点:每个协程需要的栈空间不尽相同,如果一概而论,那么有些是浪费,有些是不够用。

创建时指定

由开发者在创建时指定协程栈大小。java, c++在创建线程时可以指定其栈大小。

优点:实现简单

缺点:对开发者要求比较高,需要根据栈变量,请求量预估。但是有些场景不太好预估,比如递归调用,这种情况通常只能往大的估计。

Segmented stacks

分配和释法额外的内存空间。初始分配的比较小的空间,如4k。不够了再增加,用完即释放。以下是一个例子:

108_1.png当G调用H的时候,没有足够的栈空间来让H运行,这时候Go运行环境就会从堆里分配一个新的栈内存块去让H运行。在H返回到G之前,新分配的内存块被释放回堆。这种管理栈的方法一般都工作得很好。但对有些代码,特别是递归调用,它会造成程序不停地分配和释放新的内存空间。举个例子,在一个程序里,函数G会在一个循环里调用很多次H函数。每次调用都会分配一块新的内存空间。这就是热分裂问题(hot split problem)。

优点:动态扩展,初始成本小,可以将协程当作廉价资源使用。

缺点:存在热分裂问题(hot split problem)。

Stack copying

动态扩展,分配更大的内存,做指针迁移。

108_2.png优点:动态扩展,初始成本小,可以将协程当作廉价资源使用,且不存在hot split problem问题

缺点:由于通常以2倍扩展,当请求量密集,内存敏感的情况下,内存会消耗比较多,容易oom,当然,通常的业务量是ok的,不会有任何问题。同时100w连接才要考虑优化。

golang 栈分配方式

1、3之前采用的是Segmented stacks的方式。之后采用的Stack copying,也叫continuous stack(连续栈)

栈扩容

触发时机

运行时,发现栈不够用了

关键步骤

1、 将状态从 _Grunning 更新至 _Gcopystack
2、 计算出需要申请的数据大小
3、 copystack,进行栈复制,后面会详细分析
4、 将协程状态恢复至_Grunning
5、 走一遍协程调度

关键源码

func newstack() {
    thisg := getg()
    ......
    gp := thisg.m.curg
    ......
    // Allocate a bigger segment and move the stack.
    oldsize := gp.stack.hi - gp.stack.lo
    newsize := oldsize * 2 // 比原来大一倍
    ......
    // The goroutine must be executing in order to call newstack,
    // so it must be Grunning (or Gscanrunning).
    casgstatus(gp, _Grunning, _Gcopystack) //修改协程状态

    // The concurrent GC will not scan the stack while we are doing 
    // the copy since the gp is in a Gcopystack status.
    copystack(gp, newsize, true) //在下面会讲到
    ......
    casgstatus(gp, _Gcopystack, _Grunning)
    gogo(&gp.sched)
}

栈缩容

触发时机

gc进行时,非运行中协程,栈使用不超过1/4的,会缩容为原来1/2

关键步骤

1、 检查协程状态,如果已经结束,则释放空间
2、 确定新空间size,目前为原来1/2
3、 检查栈使用是否超过1/4,若没有,则放弃
4、 copystack,进行栈复制,后面会详细分析

关键源码

func shrinkstack(gp *g) {
    gstatus := readgstatus(gp)
    if gstatus&^_Gscan == _Gdead {
        if gp.stack.lo != 0 {
            // Free whole stack - it will get reallocated
            // if G is used again.
            stackfree(gp.stack)
            gp.stack.lo = 0
            gp.stack.hi = 0
        }
        return
    }
    ......
    oldsize := gp.stack.hi - gp.stack.lo
    newsize := oldsize / 2 // 比原来小1倍
    if newsize < _FixedStack {
        return
    }
    // Compute how much of the stack is currently in use and only
    // shrink the stack if gp is using less than a quarter of its
    // current stack. The currently used stack includes everything
    // down to the SP plus the stack guard space that ensures
    // there's room for nosplit functions.
    avail := gp.stack.hi - gp.stack.lo
    //当已使用的栈占不到总栈的1/4 进行缩容
    if used := gp.stack.hi - gp.sched.sp + _StackLimit; used >= avail/4 {
        return
    }

    copystack(gp, newsize, false) //在下面会讲到
}

copystack栈拷贝过程

原来内容上的拷贝

108_3.png

关键步骤

1、 申请新的栈空间:new := stackalloc(uint32(newsize));
2、 调整指针指向,将sudog,ctx等,指向新位置,计算方式为原地址+delta(delta为new.hi-old.hi);
3、 gentraceback,调整栈帧到新位置;
4、 memmove老栈数据到新栈;
5、 删除老栈。

func copystack(gp *g, newsize uintptr, sync bool) {
    ......
    old := gp.stack
    ......
    used := old.hi - gp.sched.sp

    // allocate new stack
    new := stackalloc(uint32(newsize))
    ......
    // Compute adjustment.
    var adjinfo adjustinfo
    adjinfo.old = old
    adjinfo.delta = new.hi - old.hi //用于旧栈指针的调整

    //后面有机会和 select / chan 一起分析
    // Adjust sudogs, synchronizing with channel ops if necessary.
    ncopy := used
    if sync {
        adjustsudogs(gp, &adjinfo)
    } else {
        ......
        adjinfo.sghi = findsghi(gp, old)

        // Synchronize with channel ops and copy the part of
        // the stack they may interact with.
        ncopy -= syncadjustsudogs(gp, used, &adjinfo)
    }
    //把旧栈数据复制到新栈
    // Copy the stack (or the rest of it) to the new location
    memmove(unsafe.Pointer(new.hi-ncopy), unsafe.Pointer(old.hi-ncopy), ncopy)

    // Adjust remaining structures that have pointers into stacks.
    // We have to do most of these before we traceback the new
    // stack because gentraceback uses them.
    adjustctxt(gp, &adjinfo)
    adjustdefers(gp, &adjinfo)
    adjustpanics(gp, &adjinfo)
    ......
    // Swap out old stack for new one
    gp.stack = new
    gp.stackguard0 = new.lo + _StackGuard // NOTE: might clobber a preempt request
    gp.sched.sp = new.hi - used
    gp.stktopsp += adjinfo.delta
    // Adjust pointers in the new stack.
    gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, adjustframe, noescape(unsafe.Pointer(&adjinfo)), 0)
    ......
    //释放旧栈
    stackfree(old)
}

栈帧调整

golang栈帧
package main

func myFunction(a, b int) (int, int) {
    return a + b, a - b
}

func main() {
    myFunction(66, 77)
}

108_4.png

栈帧调整

gentraceback里回调了adjustframe函数,我们所需要了解的即golang的栈空间中,有存放函数参数,返回值,函数返回地址等信息,这些地址都需要调节,该函数就是针对原来的栈指针进行的调节。代码如下:

// Note: the argument/return area is adjusted by the callee.
func adjustframe(frame *stkframe, arg unsafe.Pointer) bool {
    adjinfo := (*adjustinfo)(arg)
    targetpc := frame.continpc
    if targetpc == 0 {
        // Frame is dead.
        return true
    }
    f := frame.fn
    .........
    pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, &adjinfo.cache)
    if pcdata == -1 {
        pcdata = 0 // in prologue
    }

    // Adjust local variables if stack frame has been allocated.
    size := frame.varp - frame.sp
    var minsize uintptr
    switch sys.ArchFamily {
    case sys.ARM64:
        minsize = sys.SpAlign
    default:
        minsize = sys.MinFrameSize
    }
    if size > minsize {
        var bv bitvector
        stackmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
        if stackmap == nil || stackmap.n <= 0 {
            print("runtime: frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n")
            throw("missing stackmap")
        }
        // Locals bitmap information, scan just the pointers in locals.
        if pcdata < 0 || pcdata >= stackmap.n {
            print("runtime: pcdata is ", pcdata, " and ", stackmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
            throw("bad symbol table")
        }
        bv = stackmapdata(stackmap, pcdata)
        size = uintptr(bv.n) * sys.PtrSize
        if stackDebug >= 3 {
            print("      locals ", pcdata, "/", stackmap.n, " ", size/sys.PtrSize, " words ", bv.bytedata, "\n")
        }
        adjustpointers(unsafe.Pointer(frame.varp-size), &bv, adjinfo, f)
    }

    // Adjust saved base pointer if there is one.
    if sys.ArchFamily == sys.AMD64 && frame.argp-frame.varp == 2*sys.RegSize {
        if !framepointer_enabled {
            print("runtime: found space for saved base pointer, but no framepointer experiment\n")
            print("argp=", hex(frame.argp), " varp=", hex(frame.varp), "\n")
            throw("bad frame layout")
        }
        if stackDebug >= 3 {
            print("      saved bp\n")
        }
        if debugCheckBP {
            // Frame pointers should always point to the next higher frame on
            // the Go stack (or be nil, for the top frame on the stack).
            bp := *(*uintptr)(unsafe.Pointer(frame.varp))
            if bp != 0 && (bp < adjinfo.old.lo || bp >= adjinfo.old.hi) {
                println("runtime: found invalid frame pointer")
                print("bp=", hex(bp), " min=", hex(adjinfo.old.lo), " max=", hex(adjinfo.old.hi), "\n")
                throw("bad frame pointer")
            }
        }
        adjustpointer(adjinfo, unsafe.Pointer(frame.varp))
    }

    // Adjust arguments.
    if frame.arglen > 0 {
        var bv bitvector
        if frame.argmap != nil {
            bv = *frame.argmap
        } else {
            stackmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
            if stackmap == nil || stackmap.n <= 0 {
                print("runtime: frame ", funcname(f), " untyped args ", frame.argp, "+", frame.arglen, "\n")
                throw("missing stackmap")
            }
            if pcdata < 0 || pcdata >= stackmap.n {
                print("runtime: pcdata is ", pcdata, " and ", stackmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n")
                throw("bad symbol table")
            }
            bv = stackmapdata(stackmap, pcdata)
        }
        if stackDebug >= 3 {
            print("args\n")
        }
        adjustpointers(unsafe.Pointer(frame.argp), &bv, adjinfo, funcInfo{})
    }
    return true
}

文章永久链接:https://tech.souyunku.com/38310

未经允许不得转载:搜云库技术团队 » golang核心原理-协程栈

JetBrains 全家桶,激活、破解、教程

提供 JetBrains 全家桶激活码、注册码、破解补丁下载及详细激活教程,支持 IntelliJ IDEA、PyCharm、WebStorm 等工具的永久激活。无论是破解教程,还是最新激活码,均可免费获得,帮助开发者解决常见激活问题,确保轻松破解并快速使用 JetBrains 软件。获取免费的破解补丁和激活码,快速解决激活难题,全面覆盖 2024/2025 版本!

联系我们联系我们