什么是堆(heap)
堆是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。
堆总是满足下列性质:
- 堆中某个节点的值总是不大于或不小于其父节点的值;
- 堆总是一棵完全二叉树。
将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的抽象数据类型描述
实现思路(最大堆)
最大堆的插入
1、 我们先将要插入的结点插入到树的最后面。
2、 接着,我们将其与其父结点比较。若小于父结点,表示插入成功。否则,将父结点和其进行交换。不断进行比较。
最大堆的删除(删除最大值)
1、 首先取出根结点元素,将树的最后一个结点T替换到根结点
2、 此时结点T与左右两个结点比较。将较大的结点与结点T替换。替换后,与左右两个结点比较。不断循环这个操作,直至树为最大堆。
最大堆的建立
1、 将N个元素按照输入顺序存入,先满足完全二叉树的条件
2、 调整个结点顺序,以满足最大堆的有序特性
怎么进行调整呢?
我们可以采用上面最大堆的删除中,将结点同左右两个结点比较的方法。不过,我们从最后一个结点的父节点开始比较。比较完成后,就比较前一个结点,直到根节点。
程序设计
typedef struct HNode *Heap; /* 堆的类型定义 */
struct HNode {
ElementType *Data; /* 存储元素的数组 */
int Size; /* 堆中当前元素个数 */
int Capacity; /* 堆的最大容量 */
};
typedef Heap MaxHeap; /* 最大堆 */
typedef Heap MinHeap; /* 最小堆 */
#define MAXDATA 1000 /* 该值应根据具体情况定义为大于堆中所有可能元素的值 */
MaxHeap CreateHeap( int MaxSize )
{ /* 创建容量为MaxSize的空的最大堆 */
MaxHeap H = (MaxHeap)malloc(sizeof(struct HNode));
H->Data = (ElementType *)malloc((MaxSize+1)*sizeof(ElementType));
H->Size = 0;
H->Capacity = MaxSize;
H->Data[0] = MAXDATA; /* 定义"哨兵"为大于堆中所有可能元素的值*/
return H;
}
bool IsFull( MaxHeap H )
{
return (H->Size == H->Capacity);
}
bool Insert( MaxHeap H, ElementType X )
{ /* 将元素X插入最大堆H,其中H->Data[0]已经定义为哨兵 */
int i;
if ( IsFull(H) ) {
printf("最大堆已满");
return false;
}
i = ++H->Size; /* i指向插入后堆中的最后一个元素的位置 */
for ( ; H->Data[i/2] < X; i/=2 )
H->Data[i] = H->Data[i/2]; /* 上滤X */
H->Data[i] = X; /* 将X插入 */
return true;
}
#define ERROR -1 /* 错误标识应根据具体情况定义为堆中不可能出现的元素值 */
bool IsEmpty( MaxHeap H )
{
return (H->Size == 0);
}
ElementType DeleteMax( MaxHeap H )
{ /* 从最大堆H中取出键值为最大的元素,并删除一个结点 */
int Parent, Child;
ElementType MaxItem, X;
if ( IsEmpty(H) ) {
printf("最大堆已为空");
return ERROR;
}
MaxItem = H->Data[1]; /* 取出根结点存放的最大值 */
/* 用最大堆中最后一个元素从根结点开始向上过滤下层结点 */
X = H->Data[H->Size--]; /* 注意当前堆的规模要减小 */
for( Parent=1; Parent*2<=H->Size; Parent=Child ) {
Child = Parent * 2;
if( (Child!=H->Size) && (H->Data[Child]<H->Data[Child+1]) )
Child++; /* Child指向左右子结点的较大者 */
if( X >= H->Data[Child] ) break; /* 找到了合适位置 */
else /* 下滤X */
H->Data[Parent] = H->Data[Child];
}
H->Data[Parent] = X;
return MaxItem;
}
/*----------- 建造最大堆 -----------*/
void PercDown( MaxHeap H, int p )
{ /* 下滤:将H中以H->Data[p]为根的子堆调整为最大堆 */
int Parent, Child;
ElementType X;
X = H->Data[p]; /* 取出根结点存放的值 */
for( Parent=p; Parent*2<=H->Size; Parent=Child ) {
Child = Parent * 2;
if( (Child!=H->Size) && (H->Data[Child]<H->Data[Child+1]) )
Child++; /* Child指向左右子结点的较大者 */
if( X >= H->Data[Child] ) break; /* 找到了合适位置 */
else /* 下滤X */
H->Data[Parent] = H->Data[Child];
}
H->Data[Parent] = X;
}
void BuildHeap( MaxHeap H )
{ /* 调整H->Data[]中的元素,使满足最大堆的有序性 */
/* 这里假设所有H->Size个元素已经存在H->Data[]中 */
int i;
/* 从最后一个结点的父节点开始,到根结点1 */
for( i = H->Size/2; i>0; i-- )
PercDown( H, i );
}