文章永久连接:https://tech.souyunku.com/?p=7899
在本章中,我们将学习如何将Kafka与Apache Storm集成。
关于Storm
Storm最初由Nathan Marz和BackType的团队创建。 在短时间内,Apache Storm成为分布式实时处理系统的标准,允许您处理大量数据。 Storm是非常快的,并且一个基准时钟为每个节点每秒处理超过一百万个元组。 Apache Storm持续运行,从配置的源(Spouts)消耗数据,并将数据传递到处理管道(Bolts)。 联合,Spouts和Bolt构成一个拓扑。
与Storm集成
Kafka和Storm自然互补,它们强大的合作能够实现快速移动的大数据的实时流分析。 Kafka和Storm集成是为了使开发人员更容易地从Storm拓扑获取和发布数据流。
概念流
Spouts是流的源。 例如,一个喷头可以从Kafka Topic读取元组并将它们作为流发送。 Bolt消耗输入流,处理并可能发射新的流。 Bolt可以从运行函数,过滤元组,执行流聚合,流连接,与数据库交谈等等做任何事情。 Storm拓扑中的每个节点并行执行。 拓扑无限运行,直到终止它。 Storm将自动重新分配任何失败的任务。 此外,Storm保证没有数据丢失,即使机器停机和消息被丢弃。
让我们详细了解Kafka-Storm集成API。 有三个主要类集成Kafka与Storm。 他们如下 –
BrokerHosts – ZkHosts & StaticHosts
BrokerHosts是一个接口,ZkHosts和StaticHosts是它的两个主要实现。 ZkHosts用于通过在ZooKeeper中维护细节来动态跟踪Kafka代理,而StaticHosts用于手动/静态设置Kafka代理及其详细信息。 ZkHosts是访问Kafka代理的简单快捷的方式。
ZkHosts的签名如下 –
public ZkHosts(String brokerZkStr, String brokerZkPath)
public ZkHosts(String brokerZkStr)
其中brokerZkStr是ZooKeeper主机,brokerZkPath是ZooKeeper路径以维护Kafka代理详细信息。
KafkaConfig API
此API用于定义Kafka集群的配置设置。 Kafka Con-fig的签名定义如下
public KafkaConfig(BrokerHosts hosts, string topic)
- 主机 - BrokerHosts可以是ZkHosts / StaticHosts。
- 主题 - 主题名称。
SpoutConfig API
Spoutconfig是KafkaConfig的扩展,支持额外的ZooKeeper信息。
public SpoutConfig(BrokerHosts hosts, string topic, string zkRoot, string id)
- 主机 - BrokerHosts可以是BrokerHosts接口的任何实现
- 主题 - 主题名称。
- zkRoot - ZooKeeper根路径。
- id – spouts存储在Zookeeper中消耗的偏移量的状态。 ID应该唯一标识您的喷嘴。
SchemeAsMultiScheme
SchemeAsMultiScheme是一个接口,用于指示如何将从Kafka中消耗的ByteBuffer转换为风暴元组。 它源自MultiScheme并接受Scheme类的实现。 有很多Scheme类的实现,一个这样的实现是StringScheme,它将字节解析为一个简单的字符串。 它还控制输出字段的命名。 签名定义如下。
public SchemeAsMultiScheme(Scheme scheme)
- 方案 - 从kafka消耗的字节缓冲区。
KafkaSpout API
KafkaSpout是我们的spout实现,它将与Storm集成。 它从kafka主题获取消息,并将其作为元组发送到Storm生态系统。 KafkaSpout从SpoutConfig获取其配置详细信息。
下面是一个创建一个简单的Kafka喷水嘴的示例代码。
// ZooKeeper connection string
BrokerHosts hosts = new ZkHosts(zkConnString);
//Creating SpoutConfig Object
SpoutConfig spoutConfig = new SpoutConfig(hosts,
topicName, "/" + topicName UUID.randomUUID().toString());
//convert the ByteBuffer to String.
spoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
//Assign SpoutConfig to KafkaSpout.
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);
#
创建Bolt
Bolt是一个使用元组作为输入,处理元组,并产生新的元组作为输出的组件。 Bolt将实现IRichBolt接口。 在此程序中,使用两个Bolt类WordSplitter-Bolt和WordCounterBolt来执行操作。
IRichBolt接口有以下方法 –
- 准备 - 为Bolt提供要执行的环境。 执行器将运行此方法来初始化喷头。
- 执行 - 处理单个元组的输入。
- 清理 - 当Bolt要关闭时调用。
- declareOutputFields - 声明元组的输出模式。
让我们创建SplitBolt.java,它实现逻辑分割一个句子到词和CountBolt.java,它实现逻辑分离独特的单词和计数其出现。
SplitBolt.java
import java.util.Map;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Values;
import backtype.storm.task.OutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.IRichBolt;
import backtype.storm.task.TopologyContext;
public class SplitBolt implements IRichBolt {
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
}
@Override
public void execute(Tuple input) {
String sentence = input.getString(0);
String[] words = sentence.split(" ");
for(String word: words) {
word = word.trim();
if(!word.isEmpty()) {
word = word.toLowerCase();
collector.emit(new Values(word));
}
}
collector.ack(input);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
}
@Override
public void cleanup() {}
@Override
public Map<String, Object> getComponentConfiguration() {
return null;
}
}
CountBolt.java
import java.util.Map;
import java.util.HashMap;
import backtype.storm.tuple.Tuple;
import backtype.storm.task.OutputCollector;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.IRichBolt;
import backtype.storm.task.TopologyContext;
public class CountBolt implements IRichBolt{
Map<String, Integer> counters;
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.counters = new HashMap<String, Integer>();
this.collector = collector;
}
@Override
public void execute(Tuple input) {
String str = input.getString(0);
if(!counters.containsKey(str)){
counters.put(str, 1);
}else {
Integer c = counters.get(str) +1;
counters.put(str, c);
}
collector.ack(input);
}
@Override
public void cleanup() {
for(Map.Entry<String, Integer> entry:counters.entrySet()){
System.out.println(entry.getKey()+" : " + entry.getValue());
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}
@Override
public Map<String, Object> getComponentConfiguration() {
return null;
}
}
提交拓扑
Storm拓扑基本上是一个Thrift结构。 TopologyBuilder类提供了简单而容易的方法来创建复杂的拓扑。 TopologyBuilder类具有设置spout(setSpout)和设置bolt(setBolt)的方法。 最后,TopologyBuilder有createTopology来创建to-pology。 shuffleGrouping和fieldsGrouping方法有助于为喷头和Bolt设置流分组。
本地集群 - 为了开发目的,我们可以使用 LocalCluster 对象创建本地集群,然后使用 LocalCluster的 submitTopology 类。
KafkaStormSample.java
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.topology.TopologyBuilder;
import java.util.ArrayList;
import java.util.List;
import java.util.UUID;
import backtype.storm.spout.SchemeAsMultiScheme;
import storm.kafka.trident.GlobalPartitionInformation;
import storm.kafka.ZkHosts;
import storm.kafka.Broker;
import storm.kafka.StaticHosts;
import storm.kafka.BrokerHosts;
import storm.kafka.SpoutConfig;
import storm.kafka.KafkaConfig;
import storm.kafka.KafkaSpout;
import storm.kafka.StringScheme;
public class KafkaStormSample {
public static void main(String[] args) throws Exception{
Config config = new Config();
config.setDebug(true);
config.put(Config.TOPOLOGY_MAX_SPOUT_PENDING, 1);
String zkConnString = "localhost:2181";
String topic = "my-first-topic";
BrokerHosts hosts = new ZkHosts(zkConnString);
SpoutConfig kafkaSpoutConfig = new SpoutConfig (hosts, topic, "/" + topic,
UUID.randomUUID().toString());
kafkaSpoutConfig.bufferSizeBytes = 1024 * 1024 * 4;
kafkaSpoutConfig.fetchSizeBytes = 1024 * 1024 * 4;
kafkaSpoutConfig.forceFromStart = true;
kafkaSpoutConfig.scheme = new SchemeAsMultiScheme(new StringScheme());
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("kafka-spout", new KafkaSpout(kafkaSpoutCon-fig));
builder.setBolt("word-spitter", new SplitBolt()).shuffleGroup-ing("kafka-spout");
builder.setBolt("word-counter", new CountBolt()).shuffleGroup-ing("word-spitter");
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("KafkaStormSample", config, builder.create-Topology());
Thread.sleep(10000);
cluster.shutdown();
}
}
在移动编译之前,Kakfa-Storm集成需要策展人ZooKeeper客户端java库。 策展人版本2.9.1支持Apache Storm 0.9.5版(我们在本教程中使用)。 下载下面指定的jar文件并将其放在java类路径中。
- curator-client-2.9.1.jar
- curator-framework-2.9.1.jar
在包括依赖文件之后,使用以下命令编译程序,
javac -cp "/path/to/Kafka/apache-storm-0.9.5/lib/*" *.java
执行
启动Kafka Producer CLI(在上一章节中解释),创建一个名为 my-first-topic 的新主题,并提供一些样本消息,如下所示 –
hello
kafka
storm
spark
test message
another test message
现在使用以下命令执行应用程序 –
java -cp “/path/to/Kafka/apache-storm-0.9.5/lib/*":. KafkaStormSample
此应用程序的示例输出如下所示 –
storm : 1
test : 2
spark : 1
another : 1
kafka : 1
hello : 1
message : 2